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Abstract

An approximate analytical solution is derived for the steady state, purely tangential flow of a viscoelastic fluid obeying the Giesekus
constitutive equation in a concentric annulus with inner cylinder rotation. An approximation is used for the estimation of radial normal
stress. The effect of Weissenberg number (We), radius ratio (j) and mobility factor (a) on velocity distribution and fRe are investigated.
The results show that the velocity gradient near the inner cylinder increases as the fluid elasticity increases. The results also show that fRe

decreases with increasing fluid elasticity.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Tangential flows of non-Newtonian fluids within annuli
have wide range of engineering applications such as to
journal bearings, commercial viscometers, swirl nozzles,
chemical and mechanical mixing equipment and electrical
motors (Maron and Cohen, 1991). An extensive bibliogra-
phy of papers on the flow of non-Newtonian liquids
through annular channels is given in a recent paper by
Escudier et al. (2002). The tangential flow of Maxwell,
White–Metzner and CEF fluids in concentric and eccentric
annuli has been analyzed using perturbation theory (Beris
et al., 1983). The flow of a Casson fluid between two rotat-
ing cylinders was studied by Batra and Das (1992) and a
summary of laminar flow of non-Newtonian fluids in a
rotating annulus was reported by Batra and Eissa (1994).
Flow of a fluid obeying the Robertson–Stiff model was
investigated by Eissa and Ahmad (1999), while Rao
(1999) reported results for the flow of a Johnson–Segalman
fluid between rotating co-axial cylinders. Khellaf and Lau-
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riat (2000) analyzed the convective heat transfer character-
istics for the flow of a Carreau fluid between rotating
concentric vertical cylinders. Cruz and Pinho (2004)
derived an analytical solution for helical flow within a con-
centric annulus of a fluid obeying the simplified form of the
Phan–Thien–Tanner (SPTT) constitutive equation. An
analytical solution is derived for the tangential flow of a
viscoelastic fluid obeying the Phan–Thien–Tanner (PTT)
constitutive equation in a concentric annulus with relative
rotation of the inner and outer cylinders (Mirzazadeh
et al., 2005).

Giesekus (1982) has developed a three-parameters
model using molecular ideas that is nonlinear in the stres-
ses. This model has gained prominence because it describes
the power-law regions for viscosity and normal-stress coef-
ficients; it also gives a reasonable description of the elonga-
tional viscosity and the complex viscosity. This model
incorporates shear-thinning shear viscosity, non-vanishing
normal-stress differences; extensional viscosity with finite
asymptotic value and non-exponential stress relaxation
and start-up curves. It reproduces thus many of the charac-
teristics of the rheology of polymer solutions and other
liquids.
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Nomenclature

A, B constants [see Eqs. (29) and (30)]
C2 constant of integration in velocity profile [Eq.

(28)]
f rotational friction factor, sw=ðqv2

c=2Þ
r radial coordinate (m)
Ri radius of inner cylinder, jR

Ro radius of outer cylinder
Re rotational Reynolds number, qvcd/g
Ta Taylor number, (qX/g)2Rid

3

T torque (N m)
vc characteristic velocity, jRX
Vh tangential velocity (m/s)
We Weissenberg number, kvc/d
z axial coordinate (m)
a mobility factor
k relaxation time in Giesekus model (s)
q fluid density

j radius ratio
d annular gap between annulus cylinders
X angular velocity of inner cylinder (s�1)
s stress tensor (Pa)
_c shear rate tensor (s�1)
g viscosity coefficient of the Giesekus model (Pa s)
h tangential coordinate

Superscripts

T transpose of tensor

* refers to dimensionless quantities

Subscripts

i refers to inner cylinder
N refers to Newtonian value
w refers to wall value
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Performance of the Giesekus model in start-up flow in
simple shear has also been studied to show its capability
in predicting stress overshoots as observed in experiments
(Giesekus, 1983).

The Giesekus model is being employed increasingly to
predict the flow and heat transfer of viscoelastic fluids:
recent papers include those of Yoo and Choi (1989); Schle-
iniger and Weinacht (1991) and Mostafaiyan et al. (2004).

The objective of the present paper is to report velocity
profiles as well as the coefficient of friction using an analyt-
ical method to solve the Giesekus model in purely tangen-
tial flow between concentric rotating cylinders where the
inner cylinder is rotating and outer cylinder is at rest, for
a wide range of Weissenberg numbers and aspect ratios.
2. Governing equations

By assuming steady state, purely tangential laminar flow
and neglecting body forces we have

vh ¼ vhðrÞ; vr ¼ vz ¼ 0 ð1Þ

where vh, vz and vr are the tangential, axial and radial com-
ponents of velocity. Under these conditions the radial and
tangential momentum equations are given as follows:
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Since the considered geometry is the concentric rotating
cylinder then it will be azimuthally symmetric, thus all of
the differentials which are with respect to h will be dis-
carded from Eqs. (2) and (3). Then the above equations
are reduced to
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where srr, shh and srh are the components of the stress
tensor and r, z and h refer to the radial, axial and tangential
directions, respectively.

The boundary conditions for this problem arise from
no-slip at the walls and are given by

r ¼ jR; vh ¼ jRX ð4Þ
r ¼ R; vh ¼ 0 ð5Þ

The Giesekus model which is used as the rheological model
is as follows:

sþ ak
g
ðs � sÞ þ ksð1Þ ¼ g _c ð6Þ

where

_c ¼ 2D ¼ rvþ ðrvÞT
h i

ð7Þ
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n o
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g and k are the model parameters and represent zero-shear
viscosity and zero-shear relaxation time, respectively (Gies-
ekus, 1983). The parameter a in Eq. (6) is a model para-
meter and the term containing a in the constitutive
equation has been attributed to anisotropic Brownian mo-
tion and/or anisotropic hydrodynamic drag on the constit-
uent polymer molecules (Bird et al., 1987) and it is required
that 0 6 a 6 1 as discussed in (Giesekus, 1982). Setting
a = 0 reduces the model to the upper convected Maxwell.
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3. Approximate solution

By introducing the following dimensionless quantities:

s� ¼ s
gvc=d

; _c� ¼ _c
vc=d

ð10Þ

v�h ¼
vh

vc

ð11Þ

We ¼ kvc

d
ð12Þ

r� ¼ r
R

ð13Þ

where vc is the characteristic velocity and defined as jRX, d
is the annular gap and is equal to R(1 � j) and R is the
radius of outer cylinder while j is the radius ratio.

Integration of Eq. (3-a) after non-dimensionalisation
leads to

s�rh ¼
j2s�wi

r�2
ð14Þ

where s�wi is the dimensionless wall shear stress on the inner
cylinder.

By expanding the Giesekus constitutive equation (Eq.
(6)) for steady tangential annular flow where _c ¼
rdðvh=rÞ=dr, we arrive at

s�rr þ aWeðs�2rr þ s�2rhÞ ¼ 0 ð15Þ
s�rh � We _c�s�rr þ aWes�rhðs�hh þ s�rrÞ ¼ _c� ð16Þ
s�hh � 2We _c�s�rh þ aWeðs�2hh þ s�2rhÞ ¼ 0 ð17Þ

Eq. (15) is second order with respect to s�rr, hence:

s�rr ¼
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a2We2s�2rh

q
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The classical positive and negative solutions of Eq. (18)
have been discussed by Schleiniger and Weinacht (1991)
using linear stability analysis and the requirements arising
from configuration tensor. They concluded that for the
case of no-solvent viscosity there is only one stable physi-
cally relevant solution and that is the positive solution with
the following restrictions:
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Yoo and Choi (1989) used a different approach for sta-
bility analysis. They concluded for the case of no-solvent
solution and in order to obtain a real solution for the nor-
mal stress (Eq. (18)) it is necessary to apply the following
condition:

1� 4a2We2s�2rh P 0 ð21Þ
In addition to this, the first normal stress difference

(shh � srr) must be positive from thermodynamic consider-
ations. Applying of these conditions arrived at the same
conclusion as Eqs. (19) and (20).
For the present study and by substitution of s�rh from Eq.
(14) into Eqs. (19) and (20) we then have
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Since j 6 r* 6 1 then Eqs. (22) and (22-a) leads to
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These inequalities implicitly indicate the conditions
beyond which there are real solutions for tangential flow
of a fluid obeying the Giesekus constitutive equation.

From Eq. (16), s�hh is
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aWe
ð24Þ

Combining Eqs. (15), (17) and (24) leads to

_c� ¼ 1þ ð2a� 1ÞWes�rr

ð1þ Wes�rrÞ
2

s�rh ð25Þ
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In the approximate solution approach, the termffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a2We2s�2rh

q
in Eq. (18) can be expressed in a power ser-

ies, using the binominal expansion:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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where all terms of higher order have been neglected com-
pared to the leading term, in the approximation, which is
valid approximation for the small value of 4a2We2s�2rh . The
truncation error is less than 6% when 4a2We2s�2rh is less than

1
2

(6% relative to the exact value of,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a2We2s�2rh

q
).

Therefore when 4a2We2s�2rh <
1
2

(or js�wij < 1
2
ffiffi
2
p

aWe
) the accu-

racy of approximation is more than 94%. Whereas in this
inequality s�wi is a function of We and a (which will be
shown in Eqs. (29)–(31)), therefore this inequality implic-
itly indicates the conditions beyond which there are accept-
able approximation errors. So in any case both of the
constitutive stability condition (Eqs. (23) and (23-a)) and
the approximation validity condition (i.e. js�wij < 1

2
ffiffi
2
p

aWe
)

should be satisfied simultaneously. Comparison of these
conditions for a given value of We and a indicates that
when a is less than 0.14645 the estimated value of js�wij from
the stability condition (Eq. (23)) is smaller than the esti-
mated value of js�wij from the approximation validity condi-
tion and when a is greater than 0.14645 the trend is
opposite. In other word for lower value of mobility factor
(a < 0.14645) satisfying the stability condition is enough
and for higher value of a we just need to check the approx-
imation validity condition.



Fig. 1. Velocity profiles for constant values of a = 0.2, j = 0.5 and
different values of We.
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The dimensionless radial normal stress s�rr can be
obtained by substitution of Eq. (26) into Eq. (18):

s�rr ¼ �aWes�2rh ð27Þ

Substitution of Eqs. (14) and (27) into Eq. (25) followed by
integration leads to the dimensionless form of the velocity
profile:
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where

A ¼ að2a� 1ÞWe2j4 ð29Þ
B ¼ aWe2j4 ð30Þ

By introducing boundary conditions from Eqs. (4) and
(5) into Eq. (28), the following relation can be derived:
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Eq. (31) is strongly nonlinear but can be solved numerically
for the dimensionless wall shear stress s�wi on the inner cyl-
inder. The Newton–Raphson method is used for the solu-
tion of Eq. (31) where the Newtonian value of s�wi (which
is obtained in the next paragraph, Eq. (33)) is used as an
initial guess. Once s�wi is known, determination of constant
C2 in Eq. (28) is straightforward: C2 is obtained from Eq.
(28) and by applying one of the boundary conditions
(Eq. (4) or Eq. (5)).

For the limiting case of Newtonian fluid (We! 0 and
a! 0), A and B in Eqs. (29) and (30) approach to zero
and the ratio of A/B goes to (�1), then the second term
on the right hand side of Eqs. (28) and (31) will be zero.
Therefore these equations reduce to
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And C2 for this case can be obtained from Eq. (32) and
by applying one of the boundary conditions (Eq. (4) or (5)).

C2 ¼ �
j

1� j2
ð34Þ

Substitution of Eqs. (33) and (34) into Eq. (32) results in
the following equation for the velocity profile of Newto-
nian fluid which is in total agreement with the previous
work (see e.g. Bird et al., 1987)
v�h
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¼ j

1� j2

1

r�2
� 1
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ð35Þ

An important parameter in engineering calculations is
the torque friction factor f defined as f ¼ swi=ðqv2

c=2Þ. As
is usual, we evaluate the product of f and the rotational
Reynolds number Re which is defined as Re = qvcd/g
(Vohr, 1968). Using these definitions we can derive the
following equations for the product of the torque friction
factor and the rotational Reynolds number:

fRe ¼ �2s�wi ð36Þ
The Taylor number, Ta, is an alternative to the rota-

tional Reynolds number and for the case of inner cylinder
rotation, it is defined as follows (Escudier et al., 2002):

Ta ¼ qX
g

� �2

Rid
3 ð37Þ

Using the torque friction factor and the Taylor number,
the following correlation will be gained:

f
ffiffiffiffiffi
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p
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ffiffiffiffiffiffiffiffiffiffiffi
1� j

j

r
ð38Þ
4. Results and discussion

Figs. 1 and 2 show the effect of the Weissenberg number
and mobility factor (a) on the velocity profile. As can be
seen, the velocity gradient near the inner cylinder increases
as the two parameters increase, i.e. as the shear-thinning
behavior of the fluid increases.

The effect of fluid elasticity on dimensionless shear stress
is shown in Fig. 3, which again indicates the shear-thinning
behavior of Giesekus model. But Fig. 4 shows that the nor-
mal stress (srr) does not behave monotonically, in other



Fig. 2. Velocity profiles for constant values of We = 1, j = 0.5 and
different values of a.

Fig. 3. The effect of fluid elasticity on shear stress for constant values of
a = 0.2, j = 0.5 and different values of We.

Fig. 4. The effect of We on radial profile of dimensionless normal stress
(s�rr) for constant values of a = 0.2, j = 0.5.

Fig. 5. s�rrjr�¼j vs. We for constant values of a = 0.2, j = 0.5.
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word the absolute value of s�rr first increases by increasing
Weissenberg number but when Weissenberg number goes
to higher values it shows the opposite trend (as it shown
in Fig. 5, where the value of s�rr on the inner cylinder is
shown against Weissenberg number). This is because s�rr

is affected by both of fluid elasticity (directly proportional
to We, as can be seen from Eq. (27)) and by shear-thinning
behavior of fluid (as it shown in Fig. 3, where s�rh decreases
by increasing fluid elasticity). For this reason it would be
better to plot the normal stress scaled with wall shear stress
as it shown in Fig. 6, as can be seen from this figure the
shear-thinning effect is removed from the normal-stress
profile. A similar result has been obtained previously by
Oliveira (2002) for pipe and slit flow of FENE-P fluid
(Fig. 4a in his work), Mostafaiyan et al. (2004) for annular
flow of Giesekus fluid (Fig. 2a in their work) and also by
Oliveira and Pinho (1999) for channel and pipe flow of
PTT fluid (Fig. 4b in their work).

Fig. 7 shows the effect of fluid elasticity on the azimuth-
ally component of normal stress (s�hh), A similar conclusion
to that for s�rr can be reached for this case. In this figure the
relation between s�hh and fluid parameters (e.g. fluid elasti-
city and mobility factor) can be obtained from the below
equation and after some mathematical simplification:



Fig. 6. Dimensionless normal-stress profiles for varying Weissenberg
number normalized with dimensionless wall shear stress (s�wi) for constant
values of a = 0.2, j = 0.5.

Fig. 7. Dimensionless normal-stress profiles for varying Weissenberg
number normalized with dimensionless wall shear stress (s�wi) for constant
values of a = 0.2, j = 0.5.

Fig. 8. The effect of radius ratio on the velocity profile for constant values
of a = 0.2, We = 1 and different values of j.
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s�hh ¼
ð1� aÞ �1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a2We2s�2rh

q� �
þ 2a2We2s�2rh

aWe 2a� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a2We2s�2rh

q� � ð39Þ
Fig. 9. The effect of We on the ratio of viscoelastic to Newtonian friction
factor (fRe/fReN) for a = 0.2 and different values of j.
Using the similar approximation approach forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a2We2s�2rh

q
, and by substitution of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a2We2s�2rh

q
from Eq. (26) into Eq. (39) we arrive at the following equa-
tion for s�hh:

s�hh ¼
aWes�2rh

1� aWe2s�2rh

ð40Þ
The influence of the radius ratio on the velocity profile is
shown in Fig. 8. These results show that the profiles
become increasingly linear with increasing j.

Figs. 9 and 10 show the effect the Weissenberg number
and mobility factor (a) on fRe which is normalized with
the corresponding Newtonian value (fReN = 4/j(1 + j)).
The decrease in fRe with increasing elasticity is again
attributable to the shear-thinning behavior of the Giesekus
fluid. Also it can be seen from Fig. 9, as Weissenberg num-
ber approaches zero the fRe values are in agreement with
those for a Newtonian fluid (Khellaf and Lauriat, 2000;
Vohr, 1968; Gazley and Monica, 1956).



Fig. 10. The effect of a on ratio of viscoelastic to Newtonian friction
factor (fRe/fReN) for We = 1 and different values of j.
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From an engineering perspective, a useful piece of infor-
mation is the development of torque versus angular velo-
city (or Weissenberg number). The torque T is given by

T ¼ �srhjr¼Ri
ð2pRiLÞRi ð41Þ

If the value of T for the Giesekus fluid is normalized
with the corresponding Newtonian value, TN then

T
T N

¼ s�wi

s�wi;N

¼ fRe
ðfReÞN

ð42Þ

which indicates that the effects of We, j and a on torque
are identical to the effects of these parameters on fRe. As
Fig. 11. The map of approximation validity for different value of We and
a and for j = 0.5.
a consequence, increasing fluid elasticity decreases the re-
quired torque for rotation of the cylinders.

Fig. 11 presents the percentage of truncation error as
function of Weissenberg number and mobility factor. As
can be seen from this figure by increasing the value of a the
range of acceptable Weissenberg number becomes narrower.
Whereas the approximate solution is valid for the small
value of (4a2We2s�2rh ), therefore any increase in the value of
a and We results in increase in the percentage of truncation
error. Also as it shown in this figure for each a, and regard-
less of the percentage of truncation error, there is an upper
limit for Weissenberg number based on the stability criterion
(see Eqs. (23) and (23-a)). For example for a < 0.2, even
though the percentage of truncation error is very small but
we can’t go to very high Weissenberg number because of sta-
bility limitation. A similar conclusion was achieved by Yoo
and Choi (1989) (see Figs. 4 and 6 in their work).

5. Conclusion

An approximate analytical solution has been derived for
the steady state, purely tangential flow in a concentric annu-
lus of a viscoelastic fluid obeying the Giesekus constitutive
equation. The results show that increasing the Weissenberg
number and mobility factor increases the velocity gradient
near the inner cylinder and so decreases the viscometric vis-
cosity of the fluid (i.e. the fluid behavior is increasingly shear
thinning). The competing effect of fluid elasticity and shear-
thinning behavior of fluid results in the non-monotonically
trend of the normal stresses. The results also show that fRe
and the required torque for rotation of inner cylinder
decreases with increasing fluid elasticity. With increasing
radius ratio the velocity profile tends to take a linear form.
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